The spatial epidemiology of cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) use: a demonstration using a population measure of community drug load derived from municipal wastewater

Caleb J. Banta-Green1, Jennifer A. Field2, Aurea C. Chiaia2, Daniel L. Sudakin2, Laura Power2 & Luc de Montigny3

Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, USA,1 Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA2 and The Surveillance Laboratory, McGill Clinical and Health Informatics, McGill University, West Montreal, Quebec, Canada3

ABSTRACT

Aims To determine the utility of community-wide drug testing with wastewater samples as a population measure of community drug use and to test the hypothesis that the association with urbanicity would vary for three different stimulant drugs of abuse. Design and participants Single-day samples were obtained from a convenience sample of 96 municipalities representing 65% of the population of the State of Oregon. Measurements Chemical analysis of 24-hour composite influent samples for benzoylecgonine (BZE, a cocaine metabolite), methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). The distribution of community index drug loads accounting for total wastewater flow (i.e. dilution) and population are reported. Findings The distribution of wastewater-derived drug index loads was found to correspond with expected epidemiological drug patterns. Index loads of BZE were significantly higher in urban areas and below detection in many rural areas. Conversely, methamphetamine was present in all municipalities, with no significant differences in index loads by urbanicity. MDMA was at quantifiable levels in fewer than half the communities, with a significant trend towards higher index loads in more urban areas. Conclusion This demonstration provides the first evidence of the utility of wastewater-derived community drug loads for spatial analyses. Such data have the potential to improve dramatically the measurement of the true level and distribution of a range of drugs. Drug index load data provide information for all people in a community and are potentially applicable to a much larger proportion of the total population than existing measures.

Keywords Benzoylecgonine, cocaine, drug epidemiology, methamphetamine, MDMA, spatial analysis, wastewater analysis.

Correspondence to: Caleb Banta-Green, Alcohol and Drug Abuse Institute, University of Washington, 1107 NE 45th Street, Suite 120, Seattle WA 98105, USA. E-mail: calebbg@u.washington.edu

Submitted 3 February 2009; initial review completed 30 April 2009; final version accepted 4 May 2009

INTRODUCTION

Drug abuse in the United States, including use of cocaine and 3,4-methylenedioxymethamphetamine (MDMA), was considered primarily an urban problem until the emergence of methamphetamine in rural areas [1,2]. Ongoing epidemiological reporting efforts such as the National Institute on Drug Abuse’s Community Epidemiology Work Group have long focused upon major metropolitan areas, as have most attempts at national surveillance systems, such as the Office of Applied Studies’ Drug Abuse Warning Network (DAWN), which utilizes mortality and emergency department data. Current population measures of drug use are known to
have many limitations, including limited population coverage, self-report bias and substantial time lags that impact negatively the reliability, validity and utility of such data [3,4]. Most major surveillance efforts are focused upon only a few major metropolitan areas, including DAWN and the recently resurrected Arrestee Drug Abuse Monitoring program in the United States which, despite their limitations, are more than most countries currently have in place. Additionally, population coverage problems for many drug use indicators are due to the exclusion of certain segments of the population, such as those incarcerated or without access to telephones who are missed by many surveys. These population omissions lead not just to underestimation of rates of drug use, but potentially to biased and invalid estimates because those least likely to be included may be the most likely to be drug users.

Results from European [5–7] and US [8] wastewater treatment plant (WWTP) sampling studies document quantifiable concentrations of illicit and pharmaceutical drugs in raw influent wastewaters. The presence of these drugs and related metabolites in wastewater is assumed to be due predominantly to excretion, and is therefore an indicator of drug consumption. MDMA was detected in raw influents at several locations throughout Europe and the United States, although it appears to be a substance of interest in many fewer studies than other drugs such as cocaine [8–10]. Findings indicate that cocaine use peaks at weekends [11,12], as would be expected given its generally intermittent use [13]. Although limited, the existing information on temporal trends provides a basic indication of the validity of the wastewater sampling approach. A Belgian study of cocaine index loads included a map suggesting greater urban use, although no statistical tests of the association between place and drug level were conducted [12]. Cocaine has been used historically throughout much of Europe and the United States, whereas methamphetamine use levels [14] are currently higher in the United States than in Europe. Similarly, methamphetamine index loads (mg person/day) estimated from measurements of raw influent wastewater also indicate higher usage of methamphetamine in the United States than in Europe [8]. Methamphetamine has emerged as a substantial drug abuse problem in the United States in recent years, with marked and shifting geographic variability. As recently as the early 2000s, methamphetamine was manufactured primarily in rural areas throughout much of the western and mid-western United States. As laws to limit access to precursor chemicals (e.g. pseudoephedrine) were implemented local methamphetamine supplies dwindled, while manufacturing increased in Mexico, with overall supplies in the northwestern United States, for instance, remaining relatively constant as trafficking patterns began to follow the more traditional routes of cocaine and heroin from Mexico. At the time of writing, January 2009, drug manufacturing and organized crime in Mexico are in a state of flux, with the impacts on methamphetamine use and distribution unknown, but once again leading potentially to increases in manufacturing within the United States [15]. The fast-moving and geographically influenced trends are difficult to monitor in real time with existing drug use indicators. Thus, there is a need to explore the potential of spatial data on the occurrence and index loads of drugs of abuse in community wastewater for drug epidemiology.

To explore the potential utility of wastewater data as a community drug use measure, a study was conducted of community drug index loads. The aims were to describe the spatial distribution of stimulant drug index loads and to test their association with urbanicity. MDMA and BZE were expected to be detected more commonly and at higher index loads in urban areas, whereas methamphetamine detection was expected in rural areas as well, with uniformity in index loads across the State of Oregon.

**METHODS**

A single-day study of a convenience sample of WWTP throughout Oregon was conducted in 2008. One hundred and forty-five municipal wastewater facilities in the State of Oregon have National Pollutant Discharge Elimination System (NPDES) permits. Due to resource constraints, 128 of these facilities were selected for recruitment; exclusion was based on WWTP similarities with other facilities in terms of geography and populations served. Two additional facilities were included that do not need NPDES permits as they do not discharge, because they are medium-sized cities in an area of the state where geographic coverage was desired. The majority of WWTP approached agreed to participate, with 96 of 130 municipalities agreeing to provide a wastewater sample. Pre-paid mailers shipped to each WWTP included: (i) a cover letter with the sampling protocol and statements that participation was voluntary and that results could not be kept confidential, (ii) a questionnaire requesting total influent flow during the period of sampling and the population served by the facility and (iii) sample collection bottles containing a preservative. Composite samples collected over a single 24-hour period corresponding to raw influent entering the respective WWTPs on Tuesday 4 March 2008 were collected and shipped by WWTP operators and received in the laboratory within 3 days of collection and frozen at −20°C until analysis. Measured drug indicators included benzoylcegonine (BZE), which is the major metabolite of cocaine [16,5], methamphetamine and 3,4-MDMA; substantial proportions of both methamphetamine and
MDMA are excreted unchanged [17,18]. The analytical method, quality control procedures, instrumental detection and lower limits of quantification for BZE, methamphetamine and MDMA have been reported previously [8]. Index loads (mg/person/day) were computed by multiplying each drug concentration (ng/l) by the total flow of wastewater (liters) and dividing by the population served by each WWTP. Index loads were grouped into tertiles. If individual drugs were detected but their concentrations in wastewater were below the reporting limits they were termed ‘below the level of quantification’. Alternatively, if the responses for individual drugs were below the analytical detection limits they were categorized as a ‘no detect’.

Rural urban commuting area (RUCA) codes incorporate census definitions of urban and rural as well as census data on work commuting patterns. RUCA codes indicate both the urban status of a location as well as its relationship to other places [19]. RUCA codes for five-digit zip codes of each of the WWTP were aggregated into three categories: urban, large rural city/town or small and isolated small rural town [20]. Stata 9.0 [21] was used for descriptive statistics and to determine the Pearson’s χ² statistic. The ‘opartchi’ command [22] for contingency table analysis of ordered categorical variables in Stata was used to test for differences and trends in drug index loads by RUCA code. The test for trends determined whether differences in row distributions of the contingency table are due to increasing values across the row, i.e. RUCA code. Mapping was completed using ArcMap 9.2 [23].

RESULTS

The total population served by the 96 participating WWTP was 2,478,168, which according to the US Census is approximately 65% of the State of Oregon’s population in 2008. The smallest municipality served had a population of 170 people, the largest 562,690, with a median of 5,595 and an average of 25,814 (standard deviation 69,922). The total number of urban locations was 36, large rural city/towns 26 and small rural towns 34. Figure 1 presents the distribution of index loads by RUCA for each drug; Table 1 presents the test statistics for these distributions and Fig. 2 presents maps of the index drug loads across the State of Oregon.

Comparing the proportions and counts in Fig. 1, the variability in distribution of drug loads by RUCA is evident. For instance, methamphetamine index loads appear approximately equal within each RUCA category, while BZE and MDMA are not equivalent across RUCA categories. Statistic tests for the distribution of the count data in the tables below each of the bar charts in Fig. 1 indicate that BZE index loads were not equivalent across RUCA types ($P < 0.001$, $\chi^2$ 26.14, df = 8) and that larger loads were more likely to occur in more urban areas ($P < 0.001$, trend in location effect $\chi^2$ 10.93, df = 2) (Table 1). Methamphetamine was present at quantifiable concentrations in raw influent for every WWTP location. The distribution of index loads for methamphetamine was equivalent across RUCA codes ($P = 0.447$, $\chi^2$ 3.51, df = 4) and there was no trend in drug index load by RUCA code ($P = 0.662$, trend in location effect $\chi^2$ 0.191, df = 2). MDMA index loads were statistically equivalent across RUCA codes ($P = 0.353$, $\chi^2$ 8.88, df = 8); however, there was a significant trend indicating higher loads in more urban areas ($P = 0.046$, trend in location effect $\chi^2$ 6.16, df = 2).

Figure 2 shows the spatial distribution of each substance across the State of Oregon. Visual inspection of the maps reveals a clear contrast between the spatial distribution of the three substances. For instance, along the west coast of Oregon, MDMA was quantified in just four municipalities, while methamphetamine was detected in every municipality and BZE occurred in all but three. These data are index drug loads, so they are adjusted for population size and total wastewater flow.

DISCUSSION

BZE was more common and with higher index loads in urban compared to rural areas across each of 96 WWTPs participating in Oregon. In contrast, methamphetamine was detected in all locations with no significant difference in index loads by urbanicity. MDMA was quantified in fewer than half the WWTP and was significantly more likely to be detected in more urban areas compared to less urban and rural areas. The observed geographic distributions are consistent with expected urban–rural patterns based on conventional drug use indicators, including drug treatment admissions, morbidity and mortality data [24,1,2]. Wastewater-derived data indicate variability in index loads and geographic distributions within and between drugs. The findings suggest a valid, rich data source that is complementary to other drug surveillance data sources [25,26]. The computed index loads represent a quantifiable measure of community drug use/excretion that is not a threat to individual privacy and that is not impacted by self-report bias. In addition, the approach is less expensive than other conventional approaches, such as surveying, while providing information that is useful for local and regional planning purposes.

Although others have used wastewater-derived data to estimate the number of drug users and doses consumed [5,12], multiple possible sources of variability [11] make such back-calculations problematic. Research is needed to determine how to account for all potential sources of variability (e.g. drug purity, routes of
Figure 1 Number and proportion of single-day drug index loads by urbanicity in Oregon for benzoylecgonine (BZE) (cocaine metabolite), methamphetamine and 3,4-methylenedioxy-methamphetamine (MDMA).
Figure 2 Maps of single-day index loads superimposed on rural urban commuting area (RUCA) codes in Oregon for benzoylecgonine (BZE) (cocaine metabolite), 3,4-methylenedioxy-methamphetamine (MDMA) and methamphetamine
ingestion, pharmacokinetics, degradation in transit to WWTPs, sampling, flow estimates, analytical error) in order to create reliable, valid and comparable index loads.

A limitation of these data is that summary population measures of drug load cannot provide insights into drug usage patterns such as dosage or frequency. However, WWTP data have the potential to provide fine geographic detail and substantial population coverage, given that the majority of the US population has sewer coverage [27], as does much of the industrialized world. Computed index loads use stated populations which are estimates. Therefore, more accurate and dynamic measures of actual population need to be explored in order to account for intra-week population variability as well as inter-season variability, e.g. commuting, vacationing and migration. The representativeness of a single, mid-week sample is limited compared to samples from multiple days of the week. Given that cocaine, as indicated by BZE, and MDMA use may vary more by day of the week due to their generally more intermittent use pattern than other drugs such as methamphetamine, it is important to note that the findings, in particular for BZE and MDMA, apply to a single mid-week testing date. Testing from a weekend day, or data combined from multiple days, might well have yielded different index loads.

The use of a convenience sample precludes generalizing the findings to the entire State or creating a single estimate for the entire State. The degree to which the convenience sample is representative of the entire State is unknown, as is the nature and direction of any bias due to non-response and site selection criteria. There were 241 incorporated places in Oregon, with a total population of 2,567,087 in 2007, so the 96 participating WWTP and the 2,478,168 residents they serve represent the vast majority of the incorporated places and a majority of the total Oregon population of 3,747,455. The level and nature of substance use in Oregon compared to the rest of the United States cannot be assessed with these data. Data were presented in terms of the relative distribution of index drug loads for each substance. This method of data presentation limits comparisons across drugs to whether substances were or were not detectable/quantifiable and precludes direct comparisons of drug index loads. The distribution of the data into tertiles would probably be impacted by non-respondents. The ongoing work of the study team is focused upon quantifying the uncertainty around computed index loads and the source of index load variability to inform future sampling campaigns and analyses in order to make more refined comparisons between substances and locations.

In conclusion, estimating community drug index loads based on WWTP-sampling is a promising drug use surveillance tool with potentially diverse applications. Data on drug index loads are of value for planning local drug prevention, intervention and treatment efforts at a much smaller geographic level and with better timeliness than was possible previously. The sampling and analysis methodologies can be adapted easily for assessing temporal and spatial differences among substances such as nicotine, pharmaceuticals and other illicit drugs, as well as modified for various time and geographic scales.

Conflict of interest

None.

Acknowledgements

Data collection and analyses were funded by a grant from Oregon Health Sciences University Medical Research Foundation. Data analyses were supported in part by a grant from the National Institute on Drug Abuse (grant 1R21DA024800-01). The authors thank Guy Allen and Pat Friel for their guidance on sampling and methodological issues, and Janet Gillaspie at the Oregon Association of Clean Water Agencies and Pete Schoonover and Meagan Falk at Oregon State University for help with logistics and sample acquisition. This publication was made possible, in part, by the Mass Spectrometry Facility Core of the Environmental Health Sciences Center at Oregon State University as supported by Award Number P30-ES000210 from the National Institute of Environmental Health Sciences (NIEHS). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIEHS or the National Institutes of Health.

Table 1  Statistical tests of association between rural urban commuting area (RUCA) codes and distribution of drug index loads for 96 Oregon municipal wastewater treatment plants.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Equivalency across RUCA</th>
<th>Trend across RUCA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>$\chi^2$</td>
</tr>
<tr>
<td>Benzoylecgonine (cocaine metabolite)</td>
<td>8</td>
<td>26.1</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>4</td>
<td>3.51</td>
</tr>
<tr>
<td>MDMA</td>
<td>8</td>
<td>8.88</td>
</tr>
</tbody>
</table>

*Pearson’s $\chi^2$ statistic; *partition of Pearson’s $\chi^2$ statistic for ordered categorical variables. MDMA: 3,4-methylenedioxymethamphetamine.
References


